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The local energy method [l -- 8] has been used to obtain the zero order energies 
and wave functions of several simple systems. The method has the advantage tha t  
no integration is required, and, as used by  F~osT et al. [i, 3 -- 7], it involves 
determining a wave function H(c) by  minimizing the variance of the quanti ty 
~%f(o) H(0)/H(0) where ~f(0) is the Hamiltonian for the system. F~os~ et al. have 
obtained good values for the zero order energies of He, H +, H 2 and Li [4, 6, 7]. 

The method has obvious attractions for properties other than  the zero order 
energy of molecules. Other molecular properties weigh~ the wave function on a 
different way from ~((0), and the variance minimization technique can be used to 
ensure tha t  the wave function is satisfactory in the most important  part  of the 
space. Thus, for calculations of field gradients at  nuelei~ the variance of s/f(~ Hr176 
can be minimized for points close to the nuclei, and for calculations of qua- 
drupolc and higher moments,  the variance can be minimized for points distant 
from the nuclei. Properties depending on the first order energy can be calculated 
with a H(~ obtained or improved in this way in accordance with the usual integral 
perturbat ion theory formula for the first order energy, 

we) = (H<o) l g z<, I T<o)), (~) 
where g((~) is the Hamiltonian corresponding to the perturbation. With this 
procedure the least squares local energy method would be an adjunct to the usual 
non-empirical calculation by  the variation method. 

The integration in Eq. (l) can, however, be avoided if the higher order pertur- 
bation equations are solved, and the object of this note is to show how the least 
squares local energy method can be extended to obtain higher order energies, and 
thus to a wide range of molecular properties. 

The first order perturbat ion equation m a y  be written [9], 

[~f(o)  _ W(O)] H(1)/H(o) + ~(1)  H(o)/H(o) = W(1), (2) 

and this can be solved by  obtaining a H(1) tha t  minimizes the variance of W(1) for 
a series of points. Eq. (2) is the basis of a ]east squares locM energy method for the 
first order perturbed wave function and energy. The method can clearly be ex- 
tended to higher orders, thus W(~) can be obtained by  minimizing the variance in 
the equation, 

[~(0) _ W(0)] H(2)/H(0) _~ [5~f(1) _ W(1)] H(1)/H(0) _~ ~(2) H(o)/H(o) __. W(2) ,  (3) 
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a form that  would apply to calculations of the diamagnetic susceptibility and 
nuclear shielding [9]. The first object of this work is, however, to find a practicable 
method of obtaining ~(~) and W(1) from Eq. (2). The notation used is similar to 
t h a t  o f  F~OST,  KELLOGG, GI~IA~C, and SCARGLE [4]. 

Let the value of the quantities in Eq. (2) evaluated at a point P be denoted by 
a subscript P,  then it may be written, 

s(~) [ ~ )  o(0)1 ~ ( 1 ) , ~ ( 0 )  ~ ( 1 )  ~ ( o ) , ~ ( 0 ~  
= - o P J  ~ p / ~  v + ~ P ~ e / ~  �9 ( 4 )  

e(~ ) and T(~ ) are obtained in a zero order calculation. ~r/(1) may be written, 

~T](1) = ~. or(i) C r ,  r ~ l ,  2 . . .  N ,  (5) 

and the variance VO) is given by, 

V(1) = @(1)~} _ (e(1))~, (6) 
where 

{e(1)) = ~ .(1) 0(1)/~' .(1) ~ .  o v  / ~ ~ e  , ( 7 )  
P P 

P P 

the g(p being weight factors for the points P. As suggested by FaosT et al. g(p may 
be written, 

Z(p = wp ~ ) ~ ,  (9) 
or  

g~) = wp T(~ )~ , (10) 

where the we are input data. F~OST c ta l .  [4] have suggested tha~ the best choice 
of P and wp is as in Gaussian quadrature; but this choice is not appropriate for the 
higher order energies, where the type of perturbation must determine the points 
and weights, in accordance with the principle stated above. 

The c(r 1) are determined from the equations, 

~ v(~)/~c(~ 1) = o ,  ( i i  ) 

and from (4) -- (i0) it follows by some tedious algebra that  ( l i )  may be written, 

2 L Y P  ~ '  .(1) cp~(i) ~"c'P/v"~l;~(l)/~'(i) + X.,~' e(1)P ~'~(i)2/~C(1)yp ] t - -  2 (8(2)) ~ [~(~) t~cp/vvt~~ + E~) vYPJVVt~"(1)l~'(1)]J 
P P P 

-~- ~ C(rl)[<S(1)} 2 - -  V (1)] S r t  = O,  t = l ,  2 . . . N ,  (12) 
P 

where 
Srt  = E w e  Cr(P) Ct(P), (13) 

P 
Cr(P), Ct(P) being the functions Cr, Ct evaluated at the point P. 

I f  ~p~-(1)/~-(1)/.,p _-- 0, following the definition given in (9), then (12) becomes 

~oP/'~'~t -- (sO)} ~op/,~t = 0 (14) 
P P 

and from (4), (14) becomes, 

c (1) [Girt --  H; t  - -  L;t  + S;t] + H t  --  M t  = 0 (i5) 
g 

where, 

~;~ = Z ~ ~(~)~ r r 
P 
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where 

P 
H;t = E wp s(~ ) {[5r Cr(P)] Ct(P) + Cr(e) 5r ) Ct(P)} 

P 

P P 
(16) 

Ar  = Z wp  g-/(~) [4Yf(~ - e~ )] Cr(P) ,  
P 

P P 

= E _ 
P 

The determinat ion of  the  c(r 1) and thus  of  W0), which m a y  be equated to <e(1)}, 
involves the solution of  the inhomogeneous simultaneous equations given by  (i5). 

The most  impor tan t  decisions involve the  choice of  basis functions Cr and the 
points P .  The only complicated algebra comes f rom the te rm j~f(0) ~(1) in Eq. (4). 
The second and higher order equations m a y  be obtained similarly. 

An  obvious model sys tem on which to test  the method  is the  hydrogen mole- 
cule. H~Ja~ISS and F~OST [7] have described a least squares local energy calcula- 
t ion of  W(~ and ~(0) for this molecule involving a James-Coolidge type  wave func- 
t ion with spheroidal basis functions, ~, ~, thus,  

~p(o) ~e-~(~+~) k ~ r ~ ~(0) (17) 
k,l,m,n,p 

The programme used by  them was the  s tar t ing point  for the work reported here. 
I f  ~(1) is wri t ten as in (i7) with ,(1) replacing ~(0) j~f(0) ~(1) can clearly be ~klmnp ~klmnp 
evaluated in the same wa y  as 54z(~ ~(o). The rest of  the p rogramme then  simply 
involves sett ing up Eq. (15), and solving for c(~lt)mnv with a l ibrary sub-routine. The 
programme was wri t ten in For t r an  I I  for the N.I .R.N.S.  Atlas computer  at  
Chilton, and it was arranged so t h a t  5~(1) forms a separate For t ran  funct ion which 
can be changed at will. 

Pre l iminary calculations have been made for the  field gradient  and quadrupole 
momen t  of  the hydrogen molecule, and the results will be presented later. 

The author is indebted to Professor A. A. F~OST for a listing of a programme written by 
Dr. D. K. HAa~BS, and to the Atlas Computer Laboratory for running the computations. 
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